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Received 28 August 1996

Abstract. The three-dimensional mean spherical model with aL-layer film geometry, under
Neumann–Neumann and Neumann–Dirichlet boundary conditions is considered. Surafce fields
h1 andhL are supposed to act at the surfaces bounding the system. In the case of Neumann
boundary conditions a new surface critical exponent1sb

1 = 3
2 is found. It is argued that this

exponent corresponds to a special (surface–bulk) phase transition in the model. The Privman–
Fisher scaling hypothesis for the free energy is verified and the corresponding scaling functions
for both the Neumann–Neumann and Neumann–Dirichlet boundary conditions are explicitly
derived. If the layer field is applied at some distance from the Dirichlet boundary, a family
of critical exponents emerges: their values depend on the exponent defining how the distance
scales with the finite size of the system, and interpolate continuously between the extreme cases
1o

1 = 1
2 and1sb

1 = 3
2 .

1. Introduction

It is well known that in statistical mechanical systems with surfaces a variety of surface phase
transitions can take place, depending on the imposed boundary conditions, the enhancement
of the surface couplings and on the (magnetic) fields applied at the boundaries (for a general
review see, e.g., [1–3]). If the surface coupling enhancement and the dimensionality are
large enough, the surface orders at some temperatureTs larger than the bulk critical one,
Tc, of the corresponding infinite system. The lowering of the temperature leads then to the
so-called extraordinary transition, when the bulk orders atTc in the presence of an already
ordered surface. In the opposite case, where the surface enhancement is not sufficient to
compensate the effect of missing neighbours at the surface (in the most familiar case of the
so-called ‘free boundary conditions’), the surface critical behaviour will be driven by the
bulk: this is the ordinary phase transition. The borderline case between these two types is
termed the special, or surface–bulk, surface phase transition. To characterize the singular
behaviour of the different surface-introduced quantities, e.g., the surface magnetization,
a variety of surface critical exponents has been defined for each class of surface phase
transitions. It is well established fact now that for the ordinary phase transition there is only
one independent surface critical exponent (in addition of the bulk ones). In the extraordinary
surface universality class all the surface exponents can be expressed in terms of the bulk
ones. The special phase transition, being a borderline case and hence a multicritical phase
transition, is characterized by two new independent critical exponents. In this case one
additional crossover exponent8 appears, which describes how in the phase diagram the
line of surface phase transitions joins the line of extraordinary transitions.

In the present paper we will be interested in the finite-size scaling behaviour of a three-
dimensional hypercubic lattice system with a film geometryL × ∞2. Across the finite
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dimension of extentL Neumann–Neumann or Neumann–Dirichlet boundary conditions will
be imposed. Surface fieldsh1 and hL are supposed to act at the surfaces bounding the
system. The concrete consideration will be done on the example of the mean spherical
model.

Under Dirichlet boundary conditions for a lattice spin system we mean here the case
where the interaction of the system with the ‘surrounding world’ is modelled by setting
the spin configuration outside the system to zero. Under Neumann boundary conditions
this interaction is modelled by setting the surrounding spins to be equal to their nearest
neughbours inside the system. (A precise mathematical definition of the boundary conditions
will be given in section 2.) In the literature on lattice spin systems the terms ‘free’ and ‘fixed’
boundary conditions have both been used instead of Dirichlet boundary conditions (see,
e.g., [4–6]) and for what we call Neumann boundary conditions the term ‘free’ boundary
conditions has also been used [6]. To avoid misunderstanding, we use here the corresponding
classical terminology stemming from continuous models.

The mean spherical model has been extensively studied with respect to both the finite-
size scaling theory and (relatively less) the theory of surface phase transitions (see, e.g., [1, 4,
7, 8] for a review). Nevertheless, the situation with its surface critical exponents, especially
those for the special phase transition, is not completely clear. Thed-dimensionalL-layer
model with Dirichlet boundary conditions, in the presence of an external homogeneous
magnetic fieldh and a surface fieldh1 acting on the first layer, was considered in [9]. For
d = 3 it has been found that the singular part of the free energy density of the system (per
kBT and per spin) is of the form

fL (T , h, h1) = L−dX
(
aṫL1/ν, bhL1/ν, ch1L

11/ν
)
. (1.1)

Here ν = 1, 1 = 5
2, 11 = 1

2 are the scaling exponents ford = 3, ṫ is the shifted
reduced critical temperaturėt = (T − Tc)/Tc + ε(L), where ε(L) is the shift obeying
limL→∞ ε(L) = 0 and a, b, c are some (non-universal) metric factors. Actually, the
functional dependence given by this equation is expected to be fulfilled for any system
undergoing an ordinary phase transition. The only independent new surface critical exponent
in this case is11 = 1o

1.

As is well known, the infinite translational invariant spherical model is equivalent to
the n → ∞ limit of such an-component system [10, 11], but the spherical model with
free surfaces (or, more generally, without translation-invariant symmetry) is in factnot such
a limit [12]. The last becomes apparent if one investigates surface phase transitions for
an O(n) model in the limitn → ∞. In that case one obtains [1]11 = 1/(d − 2) (i.e.
11 = 1 for d = 3) for ordinary and11 = 2/(d − 2) for special phase transitions. An
attempt to clarify the situation with the special and extraordinary phase transitions within
the spherical model has been made in [13, 14], where the spherical model with Dirichlet
boundary conditions and an enhancement of the surface couplingKs = K(1+w) (K being
the bulk coupling andw > 0) has been considered. It turns out that if, as usual, only
one global mean spherical constraint is imposed, the model predicts quite unphysically the
existence of an extraordinary phase transition [13] whenw > 1/(2d−2) for d > 3 (in [13]
only integer dimensionalities were considered). But, if an additional constraint is involved
to ensure the proper behaviour of the surface spins, one obtains [14], as is to be expected,
that for anyw > 0 there is no other critical temperature except the bulk one, provided
d 6 3. This is in agreement with the results for theO(n) model in the limitn→∞, for
which the crossover exponent8 = (d − 3)/(d − 2). The critical exponentγ1,1 for the local
surface susceptibility

χ1,1(T ) = 1
2 lim
L→∞

[−L∂2fL (T , h, h1) /∂h
2
1

]∣∣
h=h1=0 (1.2)
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has been found to beγ o
1,1 = −1 for the d = 3 spherical model. In the present paper

we will show that the singular part of the free energy density of the spherical model with
Neumann–Neumann boundary conditions ford = 3 can be represented in the form (1.1)
with 11 = 1sb

1 = 3
2. According to the general theory of finite-size scaling, this is consistent

with the expected form of the singular part of the free energy for a finite system undergoing
special phase transition in the case where8 = 0 [8]. The corresponding scaling functionX
depends, of course, on the boundary conditions. Finally, in the case of Neumann–Dirichlet
boundary conditions, with surface fieldsh1 and h2, respectively, it will be demonstrated
that (d = 3)

fL(T , h1, hL) = L−3X
(
atL1/ν, c1h1L

1sb
1 /ν, cLhLL

1o
1/ν
)
. (1.3)

The paper is organized as follows. In section 2 we describe the model and present
convenient starting expressions for the mean spherical constraint and the free energy density.
Our main results on the finite-size scaling behaviour of the free energy density in the critical
region are given in section 3, for Neumann–Neumann boundary conditions, and in section 4,
for Neumann–Dirichlet boundary conditions. The interseting case of a localized field acting
on thelth layer in a system with Neumann–Dirichlet boundary conditions is considered in
section 5. It is shown that a continuous family of layer critical exponents11(l) emerges
then, depending on the power ofL which scales the distance from the Dirichlet boundary.
The paper closes with a short discussion given in section 6.

2. The model

We consider explicitly the three-dimensional mean spherical model with nearest-neighbour
ferromagnetic interactions on a simple cubic lattice. At each lattice siter = (r1, r2, r3) ∈ Z3

there is a random (spin) variableσ(r) ∈ R and the energy of a configurationσ3 =
{σ(r), r ∈ 3} in a finite region3 ⊂ Z3, containing|3| sites, is given by

βH(τ )3 (σ3|K,h3; s) = −K
∑
r,r′∈3

Q3(r − r′)σ (r)σ (r′)−K
∑

r∈3,r′∈3c

Q3(r − r′)σ (r)σ (r′)

+s
∑
r∈3

σ 2(r)−
∑
r∈3

h(r)σ (r). (2.1)

Hereβ = 1/kBT is the inverse temperature,K = βJ is the dimensionless coupling constant,
h3 = {h(r), r ∈ 3}, with h(r) ∈ R, is an external magnetic field,s is the spherical
field which is to be determined from the mean spherical constraint (see equation (2.21)
below),Q3(r − r′), with r, r′ ∈ Z3, is the adjacency matrix for the infinite cubic lattice:
Q3(r−r′) = 1 if and only if |r−r′| = 1 andQ3(r−r′) = 0 otherwise. The first sum on
the left-hand side of (2.1) describes the pairwise interaction between the spins in3, while
the second sum is the boundary term which depends on the boundary conditions (denoted by
the superscriptτ ): it describes the interaction of the spins in the region3 with a specified
configuration{σ(r), r ∈ 3c} in the complement3c = Z3 \3. In the remainder we take3
to be the parallelepiped3 = L1×L2×L3, with Li = {1, . . . , Li}, and explicitly study the
case of film geometry which results in the limitL2, L3→∞ at finite values ofL1 = L. In
the finiter1 direction it suffices to specify the values ofσ(0, r2, r3) andσ(L+ 1, r2, r3) for
all (r2, r3) ∈ L2×L3. The finite-size scaling behaviour of the mean spherical model in the
presence of surface fields has been studied so far [5, 9, 13, 14], under periodic, antiperiodic
and the following boundary conditions.
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(a) Dirichlet boundary conditions:

σ(0, r2, r3) = σ(L+ 1, r2, r3) = 0. (2.2)

Here we consider the following new cases.
(b) Neumann boundary conditions:

σ(0, r2, r3) = σ(1, r2, r3) σ (L+ 1, r2, r3) = σ(L, r2, r3). (2.3)

(c) Neumann–Dirichlet boundary conditions:

σ(0, r2, r3) = σ(1, r2, r3) σ (L+ 1, r2, r3) = 0. (2.4)

Obviously, the above terminology is justified by analogy with the continuum limit. The
case of free surfaces in a system of film geometry (in the limitL2, L3 → ∞), considered
in the literature [5, 9, 13, 14], corresponds to Dirichlet boundary conditions (τ1 = a). To
define the fully finite system, we assume periodic boundary conditions (p) in the r2 andr3
directions, i.e. for allr ∈ 3 and allm, n ∈ Z we set

σ(r1, r2+mL2, r3+ nL3) = σ(r1, r2, r3). (2.5)

It might be instructive to consider the configuration space�3 = R|3| as a Euclidean
vector space in which each configuration is represented by a column vectorσ3 with
components labelled according to the lexicographic order of the set{(r1, r2, r3) ∈ 3}. Letσ †3
be the corresponding transposed row vector and let the dot (·) denote matrix multiplication.
Then, for given boundary conditionsτ = (τ1, τ2, τ3), specified for each pair of opposite
faces of3 by someτi = p (periodic),a (Dirichlet), b (Neumann) orc (Neumann–Dirichlet),
the energy function (2.1) takes the form

βH(τ )3 (σ3|K,h3; s) = −Kσ †3 ·Q(τ)
3 · σ3 + s σ †3 · σ3 − h†3 · σ3. (2.6)

Here the|3| × |3| interaction matrixQ(τ)
3 can be written as

Q
(τ)
3 = (1(τ1)

1 + 2E1)× (1(τ2)

2 + 2E2)× (1(τ3)

3 + 2E3) (2.7)

where× denotes the outer product of the corresponding matrices,1
(τi)
i is the Li × Li

discrete Laplacian under boundary conditionsτi , andEi is theLi × Li unit matrix.
As is well known, the complete set of orthonormal eigenfunctions,{u(τ)L (r, k), k =

1, . . . , L}, of the one-dimensional discrete Laplacian is given by

u
(a)
L (r, k) = [2/(L+ 1)]1/2 sin

[
rϕ

(a)
L (k)

]
(2.8)

u
(b)
L (r, k) =


L−1/2 for k = 1

(2/L)1/2 cos
[
(r − 1

2)ϕ
(b)
L (k)

]
for k = 2, . . . , L

(2.9)

u
(c)
L (r, k) = 2/(2L+ 1)1/2 cos

[
(r − 1

2)ϕ
(c)
L (k)

]
(2.10)

u
(p)

L (r, k) = L−1/2 exp
[
−irϕ(p)L (k)

]
(2.11)

where

ϕ
(a)
L (k) = πk

L+ 1
ϕ
(b)
L (k) =

π(k − 1)

L

ϕ
(c)
L (k) =

π(2k − 1)

2L+ 1
ϕ
(p)

L (k) = 2πk

L
.

(2.12)
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The corresponding eigenvalues are

λ
(τ)
L (k) = −2+ 2 cosϕ(τ)L (k) k = 1, . . . , L. (2.13)

The eigenfunctions of the interaction matrix (2.7) have the form

u
(τ)
3 (r,k) = u(τ1)

L1
(r1, k1) u

(τ2)
L2
(r2, k2) u

(τ3)
L3
(r3, k3) k ∈ 3 (2.14)

and the corresponding eigenvalues are

µ
(τ)
3 (k) = 2

3∑
ν=1

cosϕ(τν)Lν
(kν) k ∈ 3. (2.15)

In order to ensure positivity of all the eigenvalues−Kµ(τ)3 (k) + s, k ∈ 3, of the
quadratic form inβH(τ )3 (σ3|K,h3; s) (see equations (2.1), (2.6)), the spherical fields must
satisfy the inequality

s > K max
k∈3

µ
(τ)
3 (k) := Kµ(τ)3 (k0). (2.16)

In view of this condition, it is convenient to introduce a shifted and rescaled spherical field
φ > 0 by settings = s(φ), where

s(φ) := K
[
φ + µ(τ)3 (k0)

]
. (2.17)

The joint probability distribution of the random variablesσ3 = {σ(r), r ∈ 3} depends
on the boundary conditionsτ , the coupling parameterK, spherical fieldφ, and external
field h3 = {h(r), r ∈ 3}; it is given by the Gibbs measure

dµ(τ)3 (σ3|K,h3;φ) = exp
[
−βH(τ )3 (σ3|K,h3; s(φ))

] ∏
r∈3

dσ(r)/Z(τ)3 (K, h3;φ) (2.18)

where dσ(r) is the Lebesgue measure onR and

Z
(τ)
3 (K, h3;φ) =

∫
R|3|

exp
[
−βH(τ )3 (σ3|K,h3; s(φ))

] ∏
r∈3

dσ(r) (2.19)

is the partition function of the Gaussian model. The latter is finite for allφ > 0 and equals
+∞ for φ 6 0.

The free-energy density of the mean shperical model in a finite region3 is given by
the Legendre transformation

βf
(τ)
3 (K, h3) := sup

φ

{
−|3|−1 lnZ(τ)3 (K, h3;φ)− s(φ)

}
. (2.20)

Here the supremum is attained at the solutionφ = φ(τ)3 (K, h3) (for brevity to be denoted
by φ(τ)3 ) of the mean spherical constraint

|3|−1
∑
r∈3
〈σ 2(r)〉(τ )3 (K, h3;φ) = 1 (2.21)

where〈· · ·〉(τ )3 (K, h3;φ) denotes expectation value with respect to the measure (2.18).
By direct evaluation of the integrals in the partition function (2.19), one obtains

βf
(τ)
3 (K, h3) = 1

2 ln(K/π)−Kµ(τ)3 (k0)+ 1
2U

(τ)
3 (φ

(τ)
3 )− 1

2P
(τ)
3 (K, h3;φ(τ)3 )−Kφ(τ)3 .

(2.22)

Here we have introduced the function

U
(τ)
3 (φ) = |3|−1

∑
k∈3

ln
[
φ + ω(τ)3 (k)

]
(2.23)
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which describes the contribution of the spin-spin interaction (to be called the ‘interaction
term’), whereω(τ)3 (k) := µ(τ)3 (k0)− µ(τ)3 (k), and the function

P
(τ)
3 (K, h3;φ) = (2K|3|)−1

∑
k∈3

|ĥ(τ )3 (k)|2
φ + ω(τ)3 (k)

(2.24)

which represents the ‘field term’. In equation (2.24)ĥ(τ )3 (k) denotes the projection of the
magnetic field configurationh3 on the eigenfunction̄u(τ)3 (r,k):

ĥ
(τ )
3 (k) =

∑
r∈3

h(r)ū(τ )3 (r,k). (2.25)

The mean spherical constraint (2.21) has the form

d

dφ
U
(τ)
3 (φ)− ∂

∂φ
P
(τ)
3 (K, h3;φ) = 2K. (2.26)

Now we setτ1 = τ ∈ {a, b, c}, τ2 = τ3 = p, note that for these boundary conditions
k0 = {1, L2, L3}, and take the limitL2, L3→∞ in expression (2.23) at fixedL1 = L:

U
(τ)

L,3(φ) := lim
L2,L3→∞

U
(τ,p,p)

3 (φ). (2.27)

Next we confine ourselves to the consideration of magnetic fields that are uniform in
the r2 andr3 directions,h(r) = hsurf(r1), r ∈ 3, and by taking the same limit in (2.24) we
obtain

P
(τ)
L (K, hsurf;φ) := lim

L2,L3→∞
P
(τ,p,p)

3 (K, h3;φ)

= 1

2KL

L∑
k=1

[ĥ(τ )surf(k)]
2

φ + 2 cosϕ(τ)L (1)− 2 cosϕ(τ)L (k)
(2.28)

where

ĥ
(τ )

surf(k) :=
L∑
r=1

hsurf(r)u
(τ)
L (r, k) τ ∈ {a, b, c}. (2.29)

Thus, the mean spherical constraint (2.26) can be written in the form

W
(τ)

L,3(φ)−
∂

∂φ
P
(τ)
L (K, hsurf;φ) = 2K (2.30)

where

W
(τ)

L,3(φ) := 1

L

L∑
k=1

W2

[
φ + 2 cosϕ(τ)L (1)− 2 cosϕ(τ)L (k)

]
(2.31)

and

W2(z) = (2π)−2
∫ 2π

0
dθ1

∫ 2π

0
dθ2

[
z + 2

2∑
ν=1

(1− cosθν)

]−1

. (2.32)

Note that having evaluatedW(τ)

L,3(φ), the corresponding interaction termU(τ)

L,3(φ
(τ)
L ) in

the singular (in the limitL→∞) part of the free energy density (see equation (2.22))

βf
(τ)

L,sing(K, hsurf) = 1
2U

(τ)

L,3(φ
(τ)
L )− 1

2P
(τ)
L (K, hsurf;φ(τ)L )−Kφ(τ)L (2.33)

can be obtained by integration:

U
(τ)

L,3(φ
(τ)
L ) = U(τ)

L,3(φ0)+
∫ φ

(τ)
L

φ0

W
(τ)

L,3(φ). (2.34)
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Hereφ(τ)L = φ(τ)L (K, hsurf) is the solution of equation (2.30), andφ0 > 0 is a suitably chosen
constant.

Equations (2.28)–(2.34) provide the starting expressions for our further finite-size scaling
analysis.

3. Finite-size scaling for Neumann–Neumann boundary conditions

In this section we study the finite-size scaling behaviour of the mean spherical constraint
and the free energy density in the case of Neumann–Neumann boundary conditions. We
consider external fieldsh1 andhL which act at the surfaces bounding the system:

hsurf(r1) = h1δr1,1+ hLδr1,L. (3.1)

From equation (2.28), assumingL even, we find that the field term takes the form

P
(b)
L (K, h1, hL;φ) = (h1+ hL)2

2KL2

[
1

φ
− L

4
+ 1

2
+
(

1+ φ
4

) L/2−1∑
k=1

(
1+ φ

2
− cos

2kπ

L

)−1
]

+ (h1− hL)2
2KL2

[
−L

4
+
(

1+ φ
4

) L/2∑
k=1

(
1+ φ

2
− cos

(2k − 1)π

L

)−1
]
. (3.2)

Sinceφ > 0, we set 1+ 1
2φ = coshx, and by making use of the identities [15]

n−1∑
k=1

ln

(
2 coshx − 2 cos

kπ

n

)
= ln(sinhnx)− ln(sinhx) (3.3)

and
n∑
k=1

ln

(
2 coshx − 2 cos

(2k − 1)π

2n

)
= ln(2 coshnx) (3.4)

we obtain the exact expression

P
(b)
L (K, h1, hL;φ) = (h1+ hL)2

4KL

[
φ−1/2(1+ φ/4)1/2 coth(Lx/2)− 1/2

]
+ (h1− hL)2

4KL

[
φ−1/2(1+ φ/4)1/2 tanh(Lx/2)− 1/2

]
. (3.5)

Hence, in the limit

φ→ 0 L→∞ so that φ1/2L = O(1) (3.6)

by taking into account thatx = φ1/2[1+O(φ)], we obtain the asymptotic form of the field
term

P
(b)
L (K, h1, hL;φ) ' − 1

4KL
(h2

1+ h2
L)+

1

4KLφ1/2

[
(h1+ hL)2 coth( 1

2Lφ
1/2)

+ (h1− hL)2 tanh( 1
2Lφ

1/2)
]

(3.7)

which holds up to corrections of O(φ) = O(L−2).
Next we evaluate the interaction term in the mean spherical constraint by using an

improved version of the method developed by Barber and Fisher [5]. Following [5] we set

W2(z) := −(1/4π) ln z + (5/4π) ln 2+Q2(z) (3.8)
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whereQ2(z), defined by the above equation, has the asymptotic behaviour asz→ 0

Q2(z) = O(z ln z) Q′2(z) := dQ2/dz = O(ln z). (3.9)

Then the interaction term in equation (2.30) takes the form

W
(b)

L,3(φ) := 1

L

L∑
k=1

W2

(
φ + 2− 2 cosφ(b)L (k)

)
= g(b)1 (φ)+ g(b)2 (φ)+ (5/4π) ln 2 (3.10)

where

g
(b)

1 (φ) = − 1

4πL

L−1∑
k=0

ln

(
2 coshx − 2 cos

πk

L

)
(3.11)

and

g
(b)

2 (φ) = 1

L

L−1∑
k=0

Q2

(
φ + 4 sin2 πk

2L

)
. (3.12)

From equation (3.3) atn = L we obtain

g
(b)

1 (φ) = − 1

4πL
[lnφ + ln(sinhLx)− ln(sinhx)] . (3.13)

In the limit (3.6) the above expression yields

g
(b)

1 (φ) = lnL

4πL
− 1

4πL
ln
[
Lφ1/2 sinh(Lφ1/2)

]+O(L−3). (3.14)

By using the Poisson summation formula for the sum in (3.12),g
(b)

2 (φ) can be written as

g
(b)

2 (φ) = 1

π

∫ π

0
Q2(φ + 4 sin2 θ)dθ + 1

2L
[Q2(φ)−Q2(φ + 4)]

+ 2

π

∞∑
q=1

∫ π

0
Q2(φ + 4 sin2 θ) cos(4Lqθ)dθ. (3.15)

Integration by parts, with the aid of (3.9), yields the result that the last term in equation
(3.15) is O(L−2). Thus

g
(b)

2 (φ) = W3(φ)+ (1/4π) ln
[
1+ 1

2φ + φ1/2(1+ φ/4)1/2]+ 1

2L
[Q2(φ)−Q2(φ + 4)]

−(5/4π) ln 2+O(L−2) (3.16)

where

W3(z) := 1

(2π)3

∫ 2π

0

∫ 2π

0

∫ 2π

0

dθ1dθ2dθ3

z + 2
∑3

ν=1(1− cosθν)
(3.17)

is the three-dimensional Watson integral.
When φ → 0, in view of (3.9) and the asymptotic expansion ofW3(φ) (see [5]),

expression (3.16) simplifies to

g
(b)

2 (φ) = 2Kc− (5/4π) ln 2− 1

2L

[
W2(4)− (3/4π) ln 2+O(φ lnφ)

]+O(φ)+O(L−2)

(3.18)

whereKc = 1
2W3(0) is the bulk critical coupling.
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Therefore, from equations (3.10), (3.14) and (3.18), in the limit (3.6) we obtain the
following asymptotic form of the interaction term:

W
(b)

L,3(φ) = 2Kc+ lnL

4πL
− 1

L

[
1

4π
ln
[
Lφ1/2 sinh(Lφ1/2)

]− 3 ln 2

8π
+ 1

2
W2(4)

]
+O(L−2).

(3.19)

Hence, by taking the derivative of (3.7) with respect toφ and ignoring the O(L−2)

corrections, the mean spherical constraint (2.30) gives the finite-size scaling form

1

4π
ln(y sinhy)− (η1+ ηL)2

16y2

[
2

y
coth

1

2
y + 1

sinh2 1
2y

]

− (η1− ηL)2
16y2

[
2

y
tanh

1

2
y − 1

cosh2 1
2y

]
= 2τ. (3.20)

Here we have introduced the scaled spherical field

y = φ1/2L = O(1) (3.21)

and scaled variables

τ = (K(b)
c,L −K)L η1 = K−1/2h1L

3/2 ηL = K−1/2hLL
3/2. (3.22)

whereK(b)
c,L is the shifted critical coupling

K
(b)
c,L = Kc+ 1

8πL

[
lnL+ 3

2 ln 2− 2πW2(4)
]
. (3.23)

The free energy density for Neumann–Neumann boundary conditions can be found from
equations (2.22), (3.7), and (3.19):

βf
(b)
L (K, h1, hL) = 1

2 ln(K/π)− 6K + 1
2U

(b)
L (0)+ 1

8KL
(h2

1+ h2
L)

−L−3

{
1

4π

∫ y
(b)
L

0
x ln(sinhx)dx + 1

8π
(y
(b)
L )

2(ln y(b)L − 1
2)

+ 1

8y(b)L

[
(η1+ ηL)2 coth 1

2y
(b)
L + (η1− ηL)2 tanh1

2y
(b)
L

]
− (y(b)L )2τ

}
+O(L−4). (3.24)

Here y(b)L = y
(b)
L (τ, η1, ηL) is the solution of the mean spherical constraint (3.20) in the

neighbourhood of the critical point defined by

τ = O(1) η1 = O(1) ηL = O(1). (3.25)

Thus, for a three-dimensionalL-layer spherical model equation (3.24) predicts that the
finite-size scaling form of the singular (in the thermodynamic limit) part of the free energy
density under Neumann–Neumann boundary conditions is

f
(b)

L, sing(K, h1, hL) = L−3X
(
aṫL1/ν, bh1L

1sb
1 /ν, bhLL

1sb
1 /ν
)

(3.26)

whereṫ := (K(b)
c,L−K) is the shifted coupling,ν = 1 and1sb

1 = 3
2 are the scaling exponents

at d = 3, and the metric factor isb = K−1/2.
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4. Finite-size scaling for Neumann–Dirichlet boundary conditions

In this case the corresponding field term (2.28) in the free energy density can be written in
the form

P
(c)
L (K, h1, hL;φ) = 1

2KL(2L+ 1)

{
h2

1 [CL(φ, 0)+ CL(φ, 1)]

+ 2h1hL [CL(φ,L− 1)− CL(φ,L+ 1)] + h2
L [CL(φ, 0)− CL(φ, 2)]

}
(4.1)

where

CL(φ, q) =
L∑
k=1

cosqϕ(c)L (k)
1
2φ + cosϕ(c)L (1)− cosϕ(c)L (k)

. (4.2)

The summation on the right-hand side of (4.2) can be performed exactly by using the
techniques suggested by Patrick [16]. The resulting analytic expression depends on the fact
whether 1

2φ + cosϕ(c)L (1) is greater than, or less than 1.

Case 1. When 1
2φ + cosϕ(c)L (1) > 1 we set

1
2φ + cosϕ(c)L (1) = coshx (4.3)

and for any integerq ∈ {0, . . . ,2L} obtain

CL(φ, q) = (L+ 1
2)

sinh(L− q + 1
2)x

sinhx cosh(L+ 1
2)x
− (−1)q

2(1+ coshx)
. (4.4)

In this case the field term (4.1) becomes

P
(c)
L (K, h1, hL;φ) = 1

2KL cosh(L+ 1
2)x

[
h2

1 sinhLx cosh1
2x/ sinhx + 2h1hL cosh1

2x

+ h2
L cosh(L− 1

2)x
]
. (4.5)

In the limit

φ→ 0 L→∞ so that y := φ1/2L = O(1) (4.6)

equation (4.3) yields the result that for any fixedy > π/2

x = (y2− π2/4)1/2L−1+O(L−2). (4.7)

Therefore, the asymptotic behaviour of (4.5) is

P
(c)
L (K, h1, hL;φ) = h2

L

2KL
+ 1

2KL3
[h2

1L
3Y1(y)+ 2h1hLL

2Y2(y)+ h2
LLY3(y)]

× [1+O(L−1)
]

(4.8)

where

Y1(y) = tanh(y2− π2/4)1/2

(y2− π2/4)1/2

Y2(y) = 1

cosh(y2− π2/4)1/2

Y3(y) = −(y2− π2/4)1/2 tanh(y2− π2/4)1/2.

(4.9)



New surface critical exponents 1397

The interaction term in the mean spherical constraint can be derived along the same
lines as in section 3, by using, instead of the identity (3.4), the identity [15]

L−1∏
k=0

2

(
coshx − cos

π(2k + 1)

2L+ 1

)
= cosh(L+ 1

2)x

cosh1
2x

. (4.10)

We obtain

W
(c)

L,3(φ) = 2K(c)
c,L −

1

4πL
ln
[
cosh(y2− π2/4)1/2

]+O(L−2) (4.11)

where

K
(c)
c,L = Kc+ 1

2L

[
Kc− 1

2
W2(4)− ln 2

4π

]
(4.12)

is the shifted critical coupling.
Finally, by combining (4.11), and the derivative of (4.8) with respect toφ, after ignoring

the O(L−2) corrections, the mean spherical constraint (2.30) takes the finite-size scaling form

1

4π
ln
[
cosh(y2− π2/4)1/2

]+ 1

4y

[
η2

1Y
′
1(y)+ 2η1ηLY

′
2(y)+ η2

LY
′
3(y)

] = 2τ (4.13)

whereY ′i (y) = dYi(y)/dy, i = 1, 2, 3, and the scaled variables are given by

τ = (K(c)
c,L −K)L η1 = K−1/2h1L

3/2 ηL = K−1/2hLL
1/2. (4.14)

The free energy density for Neumann–Dirichlet boundary conditions in the limit
(4.6) can be found from (2.22), (4.8) and (4.11). By choosing the integration constant
φ0 = 2− 2 cosϕ(c)L (1), and settingy0 := φ1/2

0 L = π/2+O(L−1), we obtain

βf
(c)
L (K, h1, h2) = 1

2
ln(K/π)−

[
4+ 2 cosϕ(c)L (1)

]
K + 1

2
U
(c)
L (φ0)− h2

L

4KL
− 1

L2
K
(c)
c,Ly

2
0

−L−3

{
1

4π

∫ y
(c)
L

π/2
x ln

[
cosh(x2− π2/4)1/2

]
dx − (y(c)L )2τ

+1

4

[
η2

1Y1(y
(c)
L )+ 2η1ηLY2(y

(c)
L )+ η2

LY3(y
(c)
L )
]}
+O(L−4). (4.15)

Here y(c)L = y
(c)
L (τ, η1, ηL) is the solution of the mean spherical constraint (4.13) in the

neighbourhood of the critical point defined by

τ = O(1) η1 = O(1) ηL = O(1). (4.16)

Case 2. When 1
2φ + cosϕ(c)L (1) < 1 we set

1
2φ + cosϕ(c)L (1) = cosx (4.17)

and for any integerq ∈ {0, . . . ,2L} obtain

CL(φ, q) = (L+ 1
2)

sin(L− q + 1
2)x

sinx cos(L+ 1
2)x
− (−1)q

2(1+ cosx)
. (4.18)

In this case the field term (4.1) in the free energy density is given by equation (4.5) with the
hyperbolic functions replaced by the corresponding trigonometric ones. Now in the limit
(4.6) equation (4.17) yields the result that for any fixed 06 y < π/2

x = (π2/4− y2)1/2L−1+O(L−2). (4.19)
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Therefore, the asymptotic behaviour of the field term (4.1) is given by equation (4.8) where
the functionsYi(y), i = 1, 2, 3 should be replaced by their analytical continuation to the
domain 06 y2 6 π2/4.

The interaction term in the mean spherical constraint can be obtained along the same
lines as in case 1. Thus, by using the identity [15]

L−1∏
k=0

2

(
cosx − cos

π(2k + 1)

2L+ 1

)
= cos(L+ 1

2)x

cos1
2x

(4.20)

we obtain the result that in the limit (4.6) the interaction term takes the asymptotic form

W
(c)

L,3(φ) = 2K(c)
c,L −

1

4πL
ln
[
cos(π2/4− y2)1/2

]+O(L−2). (4.21)

Hence, ignoring the O(L−2) corrections, the mean spherical constraint (2.30) takes the
finite-size scaling form (see equation (4.13))

1

4π
ln
[
cos(π2/4− y2)1/2

]+ 1

4y

[
η2

1Y
′
1(y)+ 2η1ηLY

′
2(y)+ η2

LY
′
3(y)

] = 2τ (4.22)

from which it follows (see equation (2.34)) that

βf
(c)
L (K, h1, hL) = 1

2
ln(K/π)−

[
4+ 2 cosϕ(c)L (1)

]
K + 1

2
U
(c)
L (φ0)− h2

L

4KL
− 1

L2
K
(c)
c,Ly

2
0

−L−3

{
− 1

4π

∫ π/2

y
(c)
L

x ln
[
cos(π2/4− x2)1/2

]
dx − (y(c)L )2τ

+1

4

[
η2

1Y1(y
(c)
L )+ 2η1ηLY2(y

(c)
L )+ η2

LY3(y
(c)
L )
]}
+O(L−4). (4.23)

Here y(c)L = y
(c)
L (τ, η1, ηL) is the solution of the mean spherical constraint (4.22) in the

neighbourhood of the critical point defined by (4.16). Obviously, equation (4.23) is an
analytical continuation of equation (4.15) from the domainy(c)L > π/2 to the domain
06 y(c)L < π/2.

Thus, for the three-dimensionalL-layer mean spherical model equations (4.15) and
(4.23) predict that the finite-size scaling form of the singular part of the free energy density
under the Neumann–Dirichlet boundary conditions is

f
(c)

L, sing(K, h1, hL) ' L−3X
(
aṫL1/ν, bh1L

1sb
1 /ν, bhLL

1o
1/ν
)
. (4.24)

Here ṫ := (K(c)
c,L −K) is the shifted coupling,ν = 1 ,1sb

1 = 3
2, and1o

1 = 1
2 are the scaling

exponents atd = 3, and the metric factor isb = K−1/2.

5. Layer field exponents under Neumann–Dirichlet boundary conditions

In the light of the results of section 4, one may naturally guess that the layer critical exponent
11(l) for a magnetic field acting only on thelth layer, 16 l 6 L, should interpolate between
the two extreme values:1sb

1 = 3
2 at the Neumann boundary (l = 1) and1o

1 = 1
2 at the

Dirichlet boundary (l = L). In this section we prove that this is indeed the case, provided
one takes into account the following important fact: we establish that the effective exponent
11(l) depends not onl itself, but on the exponent which scalesl with the finite sizeL.

Consider a field of strengthhl which acts on thelth layer, i.e. set

hsurf = hlδl,r . (5.1)
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Hence, the field term (2.28) takes the form

P
(c)
L (K, hl;φ) = h2

l

2KL(2L+ 1)
[CL(φ, 0)+ CL(φ, 2l − 1)] (5.2)

whereCL(φ, q) has been defined in equation (4.2).
As in the previous section, we consider separately the two cases depending on whether

the value of1
2φ + cosϕ(c)L (1) is greater than or less than 1.

Case 1. When 1
2φ+cosϕ(c)L (1) > 1, we use the substitution (4.3) and with the aid of (4.4)

obtain the following exact expression for the field term:

P
(c)
L (K, hl;φ) = h2

l

2KL

sinh(L− l + 1)x cosh(l − 1
2)x

sinhx cosh(L+ 1
2)x

. (5.3)

Assume now that the distancel from the Neumann boundary scales withL as

l = ρLα 06 α 6 1. (5.4)

If α = 1 and 06 ρ < 1, with the aid of equation (4.7) we obtain in the limt (4.6) that the
leading-order asymptotic behaviour of (5.3) is

P
(c)
L (K, hl;φ) ' h2

l

2K

sinh
[
(1− ρ)(y2− π2/4)1/2

]
cosh

[
ρ(y2− π2/4)1/2

]
(y2− π2/4)1/2 cosh(y2− π2/4)1/2

. (5.5)

This implies that on the macroscopic scalel = ρL, with 06 ρ < 1, the finite-size scaled
field variable is

ηl = K−1/2hlL
3/2 (5.6)

i.e.11(l) = 3
2. From expression (5.3) it is evident that the case where 06 α < 1 in (5.4)

is equivalent to settingρ = 0 in (5.5).
The situation may change qualitatively only whenl is asymptotically close to the

Dirichlet boundary (l = L). Indeed, let us assume

l = L− ρLα 06 α < 1. (5.7)

Then, in the limit (4.6) one obtains for 0< α < 1

P
(c)
L (K, hl;φ) = h2

l

2K

[
ρL−(1−α)+L−1

]− h2
l

2K
L−2(1−α)ρ2(y2−π2/4)1/2 tanh(y2−π2/4)1/2

+h2
l O(L

−2+α). (5.8)

Since the first term on the right-hand side of the above equation is independent ofy and
must be attributed to the regular part of the free energy density, we conclude that the proper
finite-size scaled field variable in this case is

ηl = K−1/2hlL
1/2+α (5.9)

i.e. there exists a continuous family of layer exponents11(l) = 1
2 + α depending on the

parameterα in (5.7). In particular, the layer critical exponent is the same for any fixed
distance from the boundary.

For the sake of completeness, we give below the explicit finite-size scaling forms of the
mean spherical constraint and the free energy density in this non-trivial case.
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Since the interaction term is the same as in section 4, by combining (4.11) and the
derivative of (5.8) with respect toφ, one obtains to leading order the finite-size scaling
form of the mean spherical constraint:

1

4π
ln
[
cosh(y2− π2/4)1/2

]− ρ2

4
ηl

2
[
Y1(y)+ Y 2

2 (y)
] = 2τ. (5.10)

Similarly, for the singular part of the free energy density we obtain

βf
(c)

L, sing(K, hl) = −L−3

{
1

4π

∫ y
(c)
L

π/2
x ln

[
cosh(x2−π2/4)1/2

]
dx−(y(c)L )2τ+

ρ2

4
ηl

2Y3(y)

}

+O(L−3−α). (5.11)

Here theYi(y), i = 1, 2, 3, are defined in (4.9), andτ is defined in (4.14),y(c)L = y(c)L (τ, ηl)
is the solution of the mean spherical constraint (5.10) in the neighbourhood of the critical
point defined by

τ = O(1) ηl = O(1). (5.12)

Case 2. When 1
2φ + cosϕ(c)L (1) < 1, we use the substitution (4.17) and with the aid of

(4.18) obtain

P
(c)
L (K, hl;φ) = h2

l

2KL

sin(L− l + 1)x cos(l − 1
2)x

sinx cos(L+ 1
2)x

. (5.13)

Under the assumption (5.4), withα = 1 and 06 ρ < 1, we obtain in the limt (4.6) that
the leading-order asymptotic behaviour of the field term (5.13) is

P
(c)
L (K, hl;φ) ' h2

l

2K

sin
[
(1− ρ)(π2/4− y2)1/2

]
cos

[
ρ(π2/4− y2)1/2

]
(π2/4− y2)1/2 cos(π2/4− y2)1/2

. (5.14)

This implies, as in case 1, that11(l) = 3
2.

Under the assumption (5.7) with 0< α < 1, we find that in the limit (4.6)

P
(c)
L (K, hl;φ) = h2

l

2K

[
ρL−(1−α)+L−1

]+ h2
l

2K
L−2(1−α)ρ2(π2/4−y2)1/2 tan(π2/4− y2)1/2

+h2
l O(L

−2+α). (5.15)

Hence one easily derives the finite-size scaling forms of the mean spherical constraint

1

4π
ln
[
cos(π2/4− y2)1/2

]− ρ2

4
ηl

2
[
Y1(y)+ Y 2

2 (y)
] = 2τ (5.16)

and the singular part of the free energy density

βf
(c)

L, sing(K, hl) = −L−3

{
− 1

4π

∫ π/2

y
(c)
L

x ln
[
cos(π2/4−x2)1/2

]
dx−(y(c)L )2τ+

ρ2

4
ηl

2Y3(y)

}

+O(L−3−α). (5.17)

Here y(c)L = y
(c)
L (τ, ηl) is the solution of the mean spherical constraint (5.16) in the

neighbourhood of the critical point defined by (5.12).
Thus, for the three-dimensionalL-layer mean spherical model equations (5.11) and

(5.17) predict that the finite-size scaling form of the singular part of the free energy density
under assumption (5.7) is

f
(c)
L,sing(K, hl) ' L−3X

(
aṫL1/ν, bhlL

11(l)/ν
)
. (5.18)
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Hereν = 1 is the bulk correlation length exponent, and11(l) = 1
2 + α is a family of layer

critical exponents depending on the parameterα in (5.7).

6. Discussion

In the present paper the finite-size scaling behaviour of a three-dimensional system with a
L ×∞2 film geometry has been investigated within the spherical model with Neumann–
Neumann and Neumann–Dirichlet boundary conditions and surface fieldsh1 andhL acting
at the boundaries. The corresponding main explicit results, given by equations (3.24),
(4.15), and (4.23), respectively, verify the Privman–Fisher finite-size scaling hypothesis for
the singular part of the free energy. These results imply the known exponent1o

1 = 1
2 for

the ordinary surface phase transition at a Dirichlet boundary, and the emergence of a new
critical exponent1sb

1 = 3
2, characterizing the Neumann boundary. We conjecture that the

latter critical exponent corresponds to the special (surface–bulk) phase transition within the
model. The last is consistent with the general expectation for the finite-size scaling form
of the free energy for this type of phase transition if one also accepts that the crossover
exponent8 = 0, as it is for the three-dimensionalO(n) models [1].

When the external magnetic field is applied at thelth layer under Neumann–Dirichlet
boundary conditions, a family ofl-dependent critical exponent11(l) appears. These
exponents change continuously from1sb

1 = 3
2 (at the Neumann surface) to1o

1 = 1
2 (at

the Dirichlet surface), see section 5. It is interesting to note that11(l) depends actually on
the exponent which scalesl with respect toL. For any layer at a finite distance apart from
the nearest boundary11(l) is the same as for that boundary. This is in full conformity with
the situation observed in [9] for the case of Dirichlet–Dirichlet boundary conditions. Only
when l = L− ρLα, with 0< α < 1, the exponent11(l) depends continuously onα. Note
that this result implies the existence of a family of critical exponents in the limitL→∞.

It should be emphasized that the spherical model under non-periodic boundary conditions
is not in the same surface universality class as the correspondingO(n) model in the limit
n→∞, in contrast with the bulk universality classes. For example1o

1 = 1 and1sb
1 = 2

for theO(∞) model, but1o
1 = 1

2 and1sb
1 = 3

2 for the spherical model.
From equations (1.2) and (3.24) and it immediately follows that the critical exponent

γ sb
1,1 for the local surface susceptibilityχ1,1 is γ sb

1,1 = 1. The same result was obtained for
the spherical model with enhanced surface couplings under Dirichlet–Dirichlet boundary
conditions [13]. Unfortunately, in that case the model quite unphysically predicts that the
surface orders for sufficiently large enhancements even ford = 3 at some temperature above
the bulk critical temperature. If one improves the model by introducing a second spherical
constraint for the spins at the boundaries only [14] this is no longer the case, i.e. the only
critical point for d 6 3 remains the bulk one. Then ford = 3 the exponentγ o

1,1 = −1,
which is the corresponding critical exponent for the ordinary phase transition [1, 9]. In our
considerations the bulk and surface couplings are equal, but the question if and how the
behaviour will change when additional spherical constraints on the spins at the surfaces are
introduced still remains open. We hope to return to this problem in a subsequent publication.
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