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Abstract. The three-dimensional mean spherical model with-kyer film geometry, under
Neumann—Neumann and Neumann-Dirichlet boundary conditions is considered. Surafce fields

hy and hy are supposed to act at the surfaces bounding the system. In the case of Neumann

boundary conditions a new surface critical expona@'? = g is found. It is argued that this

exponent corresponds to a special (surface—bulk) phase transition in the model. The Privman—
Fisher scaling hypothesis for the free energy is verified and the corresponding scaling functions
for both the Neumann—Neumann and Neumann-Dirichlet boundary conditions are explicitly
derived. If the layer field is applied at some distance from the Dirichlet boundary, a family
of critical exponents emerges: their values depend on the exponent defining how the distance
scales with the finite size of the system, and interpolate continuously between the extreme cases

o_1 sb__ 3
A? =35 andAP = 3.

1. Introduction

It is well known that in statistical mechanical systems with surfaces a variety of surface phase
transitions can take place, depending on the imposed boundary conditions, the enhancement
of the surface couplings and on the (magnetic) fields applied at the boundaries (for a general
review see, e.g., [1-3]). If the surface coupling enhancement and the dimensionality are
large enough, the surface orders at some temperdtul@ger than the bulk critical one,
Tc, of the corresponding infinite system. The lowering of the temperature leads then to the
so-called extraordinary transition, when the bulk orderg.ah the presence of an already
ordered surface. In the opposite case, where the surface enhancement is not sufficient to
compensate the effect of missing neighbours at the surface (in the most familiar case of the
so-called ‘free boundary conditions’), the surface critical behaviour will be driven by the
bulk: this is the ordinary phase transition. The borderline case between these two types is
termed the special, or surface-bulk, surface phase transition. To characterize the singular
behaviour of the different surface-introduced quantities, e.g., the surface magnetization,
a variety of surface critical exponents has been defined for each class of surface phase
transitions. It is well established fact now that for the ordinary phase transition there is only
one independent surface critical exponent (in addition of the bulk ones). In the extraordinary
surface universality class all the surface exponents can be expressed in terms of the bulk
ones. The special phase transition, being a borderline case and hence a multicritical phase
transition, is characterized by two new independent critical exponents. In this case one
additional crossover exponedt appears, which describes how in the phase diagram the
line of surface phase transitions joins the line of extraordinary transitions.

In the present paper we will be interested in the finite-size scaling behaviour of a three-
dimensional hypercubic lattice system with a film geomeltri oo?. Across the finite
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dimension of extent. Neumann—Neumann or Neumann-Dirichlet boundary conditions will
be imposed. Surface fields, and h; are supposed to act at the surfaces bounding the
system. The concrete consideration will be done on the example of the mean spherical
model.

Under Dirichlet boundary conditions for a lattice spin system we mean here the case
where the interaction of the system with the ‘surrounding world’ is modelled by setting
the spin configuration outside the system to zero. Under Neumann boundary conditions
this interaction is modelled by setting the surrounding spins to be equal to their nearest
neughbours inside the system. (A precise mathematical definition of the boundary conditions
will be given in section 2.) In the literature on lattice spin systems the terms ‘free’ and ‘fixed’
boundary conditions have both been used instead of Dirichlet boundary conditions (see,
e.g., [4-6]) and for what we call Neumann boundary conditions the term ‘free’ boundary
conditions has also been used [6]. To avoid misunderstanding, we use here the corresponding
classical terminology stemming from continuous models.

The mean spherical model has been extensively studied with respect to both the finite-
size scaling theory and (relatively less) the theory of surface phase transitions (see, e.g., [1, 4,
7, 8] for a review). Nevertheless, the situation with its surface critical exponents, especially
those for the special phase transition, is not completely clear. dttienensionalL-layer
model with Dirichlet boundary conditions, in the presence of an external homogeneous
magnetic fieldh and a surface fielét; acting on the first layer, was considered in [9]. For
d = 3 it has been found that the singular part of the free energy density of the system (per
ksgT and per spin) is of the form

fu (T, h, hy) =L X (aiL*", bhL*"", ch  L*"). (1.1)

Herev = 1, A = 3, A; = 3 are the scaling exponents far = 3, 7 is the shifted
reduced critical temperature = (T — T.)/ T + (L), wheres(L) is the shift obeying
lim;, . e(L) = 0 anda, b,c are some (non-universal) metric factors. Actually, the
functional dependence given by this equation is expected to be fulfilled for any system
undergoing an ordinary phase transition. The only independent new surface critical exponent
in this case isA; = AJ.

As is well known, the infinite translational invariant spherical model is equivalent to
then — oo limit of such arn-component system [10, 11], but the spherical model with
free surfaces (or, more generally, without translation-invariant symmetry) is iméastich
a limit [12]. The last becomes apparent if one investigates surface phase transitions for
an O(n) model in the limitn — oo. In that case one obtains [4; = 1/(d — 2) (i.e.

A; = 1 for d = 3) for ordinary andA; = 2/(d — 2) for special phase transitions. An
attempt to clarify the situation with the special and extraordinary phase transitions within
the spherical model has been made in [13, 14], where the spherical model with Dirichlet
boundary conditions and an enhancement of the surface couflirg K (1+ w) (K being

the bulk coupling andv > 0) has been considered. It turns out that if, as usual, only
one global mean spherical constraint is imposed, the model predicts quite unphysically the
existence of an extraordinary phase transition [13] wher 1/(2d — 2) for d > 3 (in [13]

only integer dimensionalities were considered). But, if an additional constraint is involved
to ensure the proper behaviour of the surface spins, one obtains [14], as is to be expected,
that for anyw > 0 there is no other critical temperature except the bulk one, provided
d < 3. This is in agreement with the results for t&n) model in the limitn — oo, for

which the crossover exponefit= (d — 3)/(d — 2). The critical exponeny ; for the local
surface susceptibility

xaa(T) = 3 im [=Lo2fi (T.h.hy) /ohi]|,_, g (2.2)
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has been found to bgP, = —1 for thed = 3 spherical model. In the present paper
we will show that the singular part of the free energy density of the spherical model with
Neumann—-Neumann boundary conditions foe= 3 can be represented in the form (1.1)
with A = AP = g According to the general theory of finite-size scaling, this is consistent
with the expected form of the singular part of the free energy for a finite system undergoing
special phase transition in the case whére- 0 [8]. The corresponding scaling functidh
depends, of course, on the boundary conditions. Finally, in the case of Neumann-Dirichlet
boundary conditions, with surface fields and &, respectively, it will be demonstrated

that @ = 3)
fu(T. hy, hy) = L73X (afL” Y eyhy LAY cphy LAY ) : (1.3)

The paper is organized as follows. In section 2 we describe the model and present
convenient starting expressions for the mean spherical constraint and the free energy density.
Our main results on the finite-size scaling behaviour of the free energy density in the critical
region are given in section 3, for Neumann—Neumann boundary conditions, and in section 4,
for Neumann-Dirichlet boundary conditions. The interseting case of a localized field acting
on thelth layer in a system with Neumann—Dirichlet boundary conditions is considered in
section 5. It is shown that a continuous family of layer critical exponent§) emerges
then, depending on the power bfwhich scales the distance from the Dirichlet boundary.
The paper closes with a short discussion given in section 6.

2. The model

We consider explicitly the three-dimensional mean spherical model with nearest-neighbour
ferromagnetic interactions on a simple cubic lattice. At each lattice-site(r1, ro, r3) € Z3

there is a random (spin) variable(r) € R and the energy of a configuration, =

{o(r), r € A} in a finite regionA C Z3, containing|A| sites, is given by

BHY (0alK, hps8) ==K Y Qalr —7)o(mo (@) —K Y Qalr —r)o(r)o(r)

r,r'eA reA,r’eAC
+s 202(1") — Zh(r)cr(r). (2.2)
reA relA

Hereg = 1/kgT is the inverse temperatur®&, = 8J is the dimensionless coupling constant,

ha = {h(r),r € A}, with h(r) € R, is an external magnetic field, is the spherical

field which is to be determined from the mean spherical constraint (see equation (2.21)
below), QA (r — 7'), with =, »' € Z3, is the adjacency matrix for the infinite cubic lattice:
Oa(r—7)=1ifand only if [r — 7’| = 1 andQ (r — ') = 0 otherwise. The first sum on

the left-hand side of (2.1) describes the pairwise interaction between the spinsnhile

the second sum is the boundary term which depends on the boundary conditions (denoted by
the superscript): it describes the interaction of the spins in the regionvith a specified
configuration{o (r), » € A°} in the complemenh® = Z3\ A. In the remainder we taka

to be the parallelepiped = £; x £, x L3, with £; = {1, ..., L;}, and explicitly study the

case of film geometry which results in the lindip, L3 — oo at finite values ofL.; = L. In

the finiter; direction it suffices to specify the values {0, r,, r3) ando (L + 1, rp, r3) for

all (rp, r3) € Lo x L3. The finite-size scaling behaviour of the mean spherical model in the
presence of surface fields has been studied so far [5, 9, 13, 14], under periodic, antiperiodic
and the following boundary conditions.
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(a) Dirichlet boundary conditions:
0(0,rp,r3) =0 (L +1,rp,173) =0. (2.2)
Here we consider the following new cases.
(») Neumann boundary conditions:
0(0,r2,r3) =0(1,r2,13) o(L+1,rp,r3) =0(L,ra,ra). (2.3)
(¢) Neumann-Dirichlet boundary conditions:
0(0,r2,r3) =0 (1,12, 13) o(L+1,rpr3)=0. (2.4)

Obviously, the above terminology is justified by analogy with the continuum limit. The
case of free surfaces in a system of film geometry (in the limitL; — o0), considered
in the literature [5, 9, 13, 14], corresponds to Dirichlet boundary conditions=(a). To
define the fully finite system, we assume periodic boundary conditiphs(the r, andrs
directions, i.e. for all- € A and allm,n € Z we set

o(ri,rp+mLy, r3+nli) =o(ry, ra, r3). (2.5)

It might be instructive to consider the configuration sp&te = R!*!I as a Euclidean
vector space in which each configuration is represented by a column wegtavith
components labelled according to the lexicographic order of thigiset,, r3) € A}. Let al
be the corresponding transposed row vector and let the Yddéiote matrix multiplication.
Then, for given boundary conditions = (11, 72, t3), specified for each pair of opposite

faces ofA by somer; = p (periodic),a (Dirichlet), » (Neumann) oe (Neumann-Dirichlet),
the energy function (2.1) takes the form

BH' (0p|K, hass) = —Kai QW op+s 01 SOz — hj\ “OA- (2.6)
Here the|A| x |A| interaction matrixQ{’ can be written as
O = (AY +2E1) x (AY? + 2 Ep) x (AYY + 2 Ey) 2.7)

where x denotes the outer product of the corresponding matrimé@), is the L; x L;
discrete Laplacian under boundary conditiapsand E; is the L; x L; unit matrix.
As is well known, the complete set of orthonormal eigenfunctiqmg)(r, k), k =

1,..., L}, of the one-dimensional discrete Laplacian is given by
WO k) = [2/(L + D]V sin[@“kk)] (2.8)
L2 fork=1
(b)
uy (r,k) = (2.9)
t (2/L)*? COS[(r - %)@b)(k)] fork=2 ... L
' (r, k) = 2/ (2L + 12 cos[(r — D (k)] (2.10)
w0k = L2 exp| ~irg(? (0)] (2.12)
where
a wk TL'(k — 1)
vl = =
(2.12)
= o oo =
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The corresponding eigenvalues are

A (k) = —2+ 2 cosp!” (k) k=1,...,L. (2.13)
The eigenfunctions of the interaction matrix (2.7) have the form
Wy (r k) = ul™ (r1, ka) ul? (ra, ko) u™ (3, ks) keA (2.14)

and the corresponding eigenvalues are
3
wy' (k) =23 cosp™(k,)  keA. (2.15)
v=1

In order to ensure positivity of all the eigenvaluek 1.\ (k) + s, k € A, of the
quadratic form inBH\ (64| K, hy; 5) (see equations (2.1), (2.6)), the spherical fieldust
satisfy the inequality

s> K rpee}\xux)(k) = Ku'? (ko). (2.16)

In view of this condition, it is convenient to introduce a shifted and rescaled spherical field
¢ > 0 by settings = s(¢), where

$@) = K ¢+ 1o | 2.17)

The joint probability distribution of the random variableg = {0 (r), r € A} depends
on the boundary conditions, the coupling parametek, spherical fieldy, and external
field hy = {h(r), r € A}; it is given by the Gibbs measure

du'” (oalK, hy: @) = exp[—ﬁH(,f)(aAlK, ha; s(¢))] [[do()/z0 (K. haz¢)  (2.18)
reA

where @& (r) is the Lebesgue measure &nand

Z (K. hys @) = / L exp| BHY EalK hais@) | [Jdor)  (219)

Rl reA

is the partition function of the Gaussian model. The latter is finite fopal 0 and equals
+o0 for ¢ < 0.

The free-energy density of the mean shperical model in a finite regids given by
the Legendre transformation

BT (K. hy) = sgp[—mrl InZ\ (K. hai @) —5) . (2.20)

Here the supremum is attained at the solutor- ¢X)(K, hp) (for brevity to be denoted
by ¢X)) of the mean spherical constraint

AT (o) (K has ¢) =1 (2.21)

relA

where(- - -)ff)(K, ha; @) denotes expectation value with respect to the measure (2.18).
By direct evaluation of the integrals in the partition function (2.19), one obtains

BT (K. hp) = 3IN(K /) — Kl (ko) + SUY (07) — PV (K, has ¢) — K.
(2.22)
Here we have introduced the function

UL @) = ALY In[g + o) (2.23)

keA
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which describes the contribution of the spin-spin interaction (to be called the ‘interaction
term’), whereo'” (k) := 1" (ko) — '’ (k), and the function

ﬁ(f)(k)|2
POK. Iy ) = K|AD-L S 1 (BIT
n (K sd - ,§¢+w&”<k>

which represents the ‘field term’. In equation (2.246)(@ denotes the projection of the
magnetic field configuration, on the eigenfunctiow'? (r, k):

hY (k) = " h(ryily (v, k). (2.25)

reA

(2.24)

The mean spherical constraint (2.21) has the form
d (T) 8
—U -
dp A (®) o0

Now we setr; = 7 € {a, b, ¢}, 12 = 13 = p, note that for these boundary conditions
ko = {1, L,, L3}, and take the limitL,, L3 — oo in expression (2.23) at fixedl; = L:

Urs@) =, lim US"(@). (2.27)

Next we confine ourselves to the consideration of magnetic fields that are uniform in
ther, andr; directions,i(r) = hsyi(r1), € A, and by taking the same limit in (2.24) we
obtain

PV (K, hp; ¢) = 2K. (2.26)

PO (K hsus. @) = lim  PO"P(K iy §)

2,L3—>00
1 ¢ hir()1?
= > [@f””( ) 5 (2.28)
KL = ¢ +2cosp!” (1) — 2 cosp'” (k)
where
R L
hidk) =" " hsus(ruy” (r. k) t e{a,b,c). (2.29)
r=1
Thus, the mean spherical constraint (2.26) can be written in the form
T 8 T
W,'h(¢) — %p; (K, hsut, ¢) = 2K (2.30)
where
1 L
(7) . (1) (7)
W) = ; A [¢ +2cospt” (1) — 2 cosy!’ (k)] (2.31)
and
2 2 2 -1
Wa(z) = (271)’2/ d91/ dos |:z +2Z(1— cos@v)} . (2.32)
0 0 v=1

Note that having evaluate®,"(¢), the corresponding interaction tertry"3(¢;”) in
the singular (in the limitL. — oo) part of the free energy density (see equation (2.22))
BI L ing K hsur) = 3ULN@1") = 3PV (K hsut: 7)) — Koy (2.33)
can be obtained by integration:
(r)

o
UL @) = U (o) + f WL (@) (2.34)
[
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Hereg\” = ¢\ (K, hsur) is the solution of equation (2.30), agg > 0 is a suitably chosen
constant.

Equations (2.28)—(2.34) provide the starting expressions for our further finite-size scaling
analysis.

3. Finite-size scaling for Neumann—Neumann boundary conditions

In this section we study the finite-size scaling behaviour of the mean spherical constraint
and the free energy density in the case of Neumann—Neumann boundary conditions. We
consider external fields, and s, which act at the surfaces bounding the system:

hsurt(r1) = h18r,1 +hidy, L. (3.1)

From equation (2.28), assumirigeven, we find that the field term takes the form

2 L/2-1 _1

2KL? |¢ 4 2 4) &~ 2 L
(hi—hy)?| L ¢\ & ¢ 2%k — 17\
T+ 1+ - —cos———~— . (32
+2KL2[4+<+4; + 5 — 008 (3.2)
Since¢ > 0, we set - %4) = coshx, and by making use of the identities [15]
n—1 kit
> (2 coshr — 2cos> = In(sinhnx) — In(sinhx) (3.3)
n
k=1
and
1 2k—1
> (2 coshx — Zcos(k)n> = In(2 coshnx) (3.4)
k=1 2n
we obtain the exact expression
2
PO, hyhos ) = ST 1032 4 10032 cothLx/2) - 1/2]
4K L
(h1 — hL)2 -1/2 1/2
T [¢7Y2(1+ ¢/HY*tanh(Lx/2) — 1/2]. (3.5)
Hence, in the limit
é— 0 L — oo so that /2L = 0(1) (3.6)

by taking into account that = ¢/?[1 + O(¢)], we obtain the asymptotic form of the field
term
1

PP (K, hy, hy: ¢) ~ KL

(h3 + h2) + (ha+ hy)? coth(;Lé™?)

1
4K LpY/2 [

+ (h1 — hp)*tanh(3 L") ] 3.7)

which holds up to corrections of @) = O(L~?).
Next we evaluate the interaction term in the mean spherical constraint by using an
improved version of the method developed by Barber and Fisher [5]. Following [5] we set

Wa(z) = —(1/47) Inz + (5/47) N2+ Qa(2) (3.8)
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where Q,(z), defined by the above equation, has the asymptotic behaviaura$

02(z) = O(zInz) 05(z) '=dQ2/dz = O(Inz). (3.9)
Then the interaction term in equation (2.30) takes the form

1 L
W) == Y Wa (¢ +2—2com(” k)
k=1

= 8"($) + 85" (¢) + (5/4m) In2 (3.10)
where
) () = 1 Lz_lln 2 coshr — 2 cos™ ¥ (3.11)
10T T £ L '
and
Y (¢) = 1§Q o+ asit X (3.12)
82 WIE L LR 2L) '
From equation (3.3) at = L we obtain
1
¢P(¢) = ———[In¢ + In(sinhLx) — In(sinhx)] . (3.13)
A7 L
In the limit (3.6) the above expression yields
InL 1
(b _ o= 1/2 i 1/2 -3
() = yl In[Lg"?sinn(Le"?)] + O(L™3). (3.14)

By using the Poisson summation formula for the sum in (3.@?}@) can be written as

1 [" . 1
e (¢) = = / 02(¢ + 4SiPO) + — [02(d) — 02(6 + B)]
T 0 2L

+§ Z/ﬂ 02(¢ + 4 sirt 0)cog4Lqg6)ds. (3.15)
¢=170

Integration by parts, with the aid of (3.9), yields the result that the last term in equation
(3.15) is QL~?). Thus

1
8 (@) = Wa(@) + (L/4m) In[1+ 3¢ + ¢¥2(L + ¢/HY?] + 57 [029) = Q2(¢ + 4]

—(5/47)In2+4 O(L7?) (3.16)

Wa(z) = / - / - / - 061092065 (3.17)
) . —m —5 .
: @212 Jo Jo Jo z4+23°% (1 cosh,)

is the three-dimensional Watson integral.
When ¢ — 0, in view of (3.9) and the asymptotic expansion W§(¢) (see [5]),
expression (3.16) simplifies to

where

(@) = 2K — (5/4m)In2 — % [W2(4) — (3/4m)IN2+ O(¢ In$)] + O($) + O(L7?)
(3.18)
where K. = JW3(0) is the bulk critical coupling.
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Therefore, from equations (3.10), (3.14) and (3.18), in the limit (3.6) we obtain the
following asymptotic form of the interaction term:

W“a¢>—2K¢+in-i[4i|np¢v2gnuL¢ua]_

3n2 1
+%mﬁ+0@4»
8r 2

(3.19)

Hence, by taking the derivative of (3.7) with respect¢taand ignoring the QL~?)
corrections, the mean spherical constraint (2.30) gives the finite-size scaling form

1 . (4 n1)? 1
“~ In(ysinh R c th B
. (& )= y 27 sinl’? 3y

16y2
2
_% [5 tanh%y _ Cosrl%%y} = 2r. (3.20)
Here we have introduced the scaled spherical field
y=9¢"’L=0() (3.21)
and scaled variables
= (K" — K)L m = K Y2h 132 n = K Y2n, L%2. (3.22)

WhereKc(Q is the shifted critical coupling

K& = Ke+ [|n L+3In2-27Wy4)]. (3.23)

8r
The free energy density for Neumann—Neumann boundary conditions can be found from
equations (2.22), (3.7), and (3.19):

BAP(K, i, hi) = 3In(K /m) — 6K + 3UP (0) + M(h%rh )

y

—L3{41f rin(sinhx)dy + o (y"”) (ny? — 1)
T Jo

1
Tay® [0+ nu)?cothy?” + (1 — n)?tanhdy” | - )% }

+O(L™%). (3.24)
Here y\” = y”(z, n1, n.) is the solution of the mean spherical constraint (3.20) in the
neighbourhood of the critical point defined by

T=0( m=0() ne = 0(). (3.25)

Thus, for a three-dimensiondl-layer spherical model equation (3.24) predicts that the
finite-size scaling form of the singular (in the thermodynamic limit) part of the free energy
density under Neumann—Neumann boundary conditions is

FO (K he, hy) = L3X (aiLl/”, bhy LAY, thLA?”/V) (3.26)

L,sing

where? := (Ké"g — K) is the shifted couplingy = 1 andA$° = 2 are the scaling exponents
atd = 3, and the metric factor i8 = K ~%/2.
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4. Finite-size scaling for Neumann-Dirichlet boundary conditions

In this case the corresponding field term (2.28) in the free energy density can be written in
the form

PL@)(K,hlth;qs) = {hi[cL(qﬁ,o)‘i‘CL((ﬁ’ 1)]

2K L(2L + 1)

+ 20h [Co(¢, L —1) = Co(¢, L+ D] +hf [CL($,0) — Cr(9, 2]} (4.1)

where

< cosqey” (k)
CL($.q) = L Py
; 3¢ + cospy” (1) — cospy” (k)

The summation on the right-hand side of (4.2) can be performed exactly by using the
techniques suggested by Patrick [16]. The resulting analytic expression depends on the fact
whetherig + cosp” (1) is greater than, or less than 1.

4.2)

Case 1. When ¢ + cosp{” (1) > 1 we set

1¢ + cosp” (1) = coshr (4.3)
and for any integey € {0, ..., 2L} obtain
sinh(L — q + %)x (—1)4
sinhx cosi(L + $)x  2(1+ coshw)’

Crd.q)=(L+3) (4.4)

In this case the field term (4.1) becomes
1
2K L cosh(L + 1)x

PK, hi, hp; ¢) = [13 sinhLx coshlx/ sinhx + 2h1h; coshlix

+ h% cosh(L — $)x]. (4.5)
In the limit

¢ — 0 L — oo so that y := ¢¥2L = 0(1) (4.6)
equation (4.3) yields the result that for any fixed> /2

x =% —a2/HY2L 1+ O(L7?). 4.7

Therefore, the asymptotic behaviour of (4.5) is

. h? 1
POK, hihey ) = -5+ - [R2L3Y4(y) + 2hah L2Ya(y) + h3 LY3()]

2K L 2K L3
x [1+0(L™)] (4.8)
where
tanh(y? — w2/4)%/2
Yi(y) = (2 — 72/ )12
Yaly) = ! (4.9)

cosh(y? — 2/4)1/?
Y3(y) = —(y? — n%/HY? tanhy® — n?/HY2.
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The interaction term in the mean spherical constraint can be derived along the same
lines as in section 3, by using, instead of the identity (3.4), the identity [15]

L-1 1
2k +1 coshL + 3
HZ(coshx _cosT &+ )) _ oosh : 2% (4.10)
©=0 2L+ 1 coshﬁx
We obtain
. . 1
Wi5(@) = 2K} — ;— In[eosty? — n?/4)Y?] + O(L ™) (4.11)
where
1 1 In2
K =Ke+ o | Ke— S Wad) — = 4.12
L °+2L[ c 2Wz() 471} ( )

is the shifted critical coupling.
Finally, by combining (4.11), and the derivative of (4.8) with respee,tafter ignoring
the Q(L~?) corrections, the mean spherical constraint (2.30) takes the finite-size scaling form

1 / /
el p [n2Y1() + 20 V() + 2 V()] = 27 (4.13)
whereY/(y) = dY;(y)/dy, i =1, 2,3, and the scaled variables are given by
T =(KS) - K)L m = K Y2h,1%? nL = K Y2h, LY?. (4.14)

The free energy density for Neumann-Dirichlet boundary conditions in the limit
(4.6) can be found from (2.22), (4.8) and (4.11). By choosing the integration constant

¢o=2— 2cos<pf)(1), and settingyp := ¢é/2L =m/2+ O(L™1), we obtain

hi 1 0.2
AKL 12 oL’

[coshy? — 72/4)M?] +

1 1
BIL (K. o) = 5 In(K /) = [4+ 20086(" (D] K + U1 (60) -

(©)

1 L
_L_3{471 / xIn [COSP‘()C2 — 712/4)1/2] dx — (yéc))zr
/2

1 C C C —
+5 [BR0L) + 2mm v + niY3<y£)>]} +O(L™). (4.15)

Here y\” = y\“(z, 71, n.) is the solution of the mean spherical constraint (4.13) in the
neighbourhood of the critical point defined by

T=0(1) nm =0 nL = 0(). (4.16)

Case 2. When ¢ + cosp{” (1) < 1 we set

1 + cosp,” (1) = cosx (4.17)
and for any integey € {0, ..., 2L} obtain
sin(L —q + )x —1)
CLg @) =(L+1) 2 =D (4.18)

#"sinx cog(L + 3)x ~ 2(1+cosx)’

In this case the field term (4.1) in the free energy density is given by equation (4.5) with the
hyperbolic functions replaced by the corresponding trigonometric ones. Now in the limit
(4.6) equation (4.17) yields the result that for any fixed ¢ < /2

x = (@2/4— y»HYV2L7t L O(L7?). (4.19)
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Therefore, the asymptotic behaviour of the field term (4.1) is given by equation (4.8) where
the functionsY;(y),i = 1, 2, 3 should be replaced by their analytical continuation to the
domain 0< y? < 72/4.

The interaction term in the mean spherical constraint can be obtained along the same
lines as in case 1. Thus, by using the identity [15]

L-1 1

2k+1 cogL + 5
| | Z(COSx _cosT &+ )> _ oo . 2 (4.20)
k=0 2L+1 COS3x

we obtain the result that in the limit (4.6) the interaction term takes the asymptotic form
C C 1 _
W) = 2K — 4~ In[costn?/4 — y3)M2] 4+ O(L72). (4.21)

Hence, ignoring the @.~2) corrections, the mean spherical constraint (2.30) takes the
finite-size scaling form (see equation (4.13))

1 7 ! 7
" [n2Y1(y) + 2nnL Y5(0) + n2Y5(0)] = 2¢ (4.22)

from which it follows (see equation (2.34)) that

1
—In[cogn?/4 — y?)1/?
o [cosm?/4— y?)Y?] +

. 1 . 1 . h2 1 .
BFL (K. huhy) = SIn(K ) — |4+ 2c08p (D) | K + SUS@0) = 25 = 5K

1 /2
—L‘3{— / xIn[cosn?/4 — x®Y?] dx — (yi)*r
4r J,©

1 c c C —
+, [RO) + 2nm Yo7 + Y3<y£>>]} +O(L™%). (4.23)

Here y\ = y'“(z, n1,n.) is the solution of the mean spherical constraint (4.22) in the

neighbourhood of the critical point defined by (4.16). Obviously, equation (4.23) is an
analytical continuation of equation (4.15) from the domaﬁﬁ) > m/2 to the domain
0<y <m/2.

Thus, for the three-dimensiondl-layer mean spherical model equations (4.15) and
(4.23) predict that the finite-size scaling form of the singular part of the free energy density
under the Neumann-Dirichlet boundary conditions is

Fng(K hahy) = 13X (aiLl/“, bhy LAY, thLA?/”) . (4.24)

Herei := (K} — K) is the shifted couplingy = 1, A{" = 3, andA$ = £ are the scaling

exponents at/ = 3, and the metric factor i8 = K2,

5. Layer field exponents under Neumann-Dirichlet boundary conditions

In the light of the results of section 4, one may naturally guess that the layer critical exponent
A1 (1) for a magnetic field acting only on tlith layer, 1< I < L, should interpolate between

the two extreme valuesA$® = 3 at the Neumann boundary £ 1) and A9 = ; at the
Dirichlet boundary { = L). In this section we prove that this is indeed the case, provided
one takes into account the following important fact: we establish that the effective exponent
A1(l) depends not on itself, but on the exponent which scalewith the finite sizeL.

Consider a field of strength; which acts on théth layer, i.e. set
hsurt = hidp,. (5.1)
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Hence, the field term (2.28) takes the form

2

(c) . — hi _
PO b §) = oy (€@ 0+ Cu(9. 2~ 1] (52)

whereC, (¢, ¢g) has been defined in equation (4.2).
As in the previous section, we consider separately the two cases depending on whether
the value of1¢ + cosp” (1) is greater than or less than 1.

Case 1. When%qﬁ +COS<p£C)(1) > 1, we use the substitution (4.3) and with the aid of (4.4)
obtain the following exact expression for the field term:

h2 sin(L — 1 + 1)x coshl — 3)x

POK, by ¢) = 5.3
L (KD 9) 2K L sinhx cosh(L + 3)x (®-3)

Assume now that the distanédrom the Neumann boundary scales withas
[=pL® O<a<1 (5.4)

If « =1 and 0< p < 1, with the aid of equation (4.7) we obtain in the limt (4.6) that the
leading-order asymptotic behaviour of (5.3) is

c h? sinh[(1 — p)(y? — w2/HY?] cosh[ p(y? — 72/4)Y/?]
PLOK By ) > o 07 — 72 412 GosHy? — 2 )1 : (5.5)

This implies that on the macroscopic scéle pL, with 0 < p < 1, the finite-size scaled
field variable is

n = K~Y2h,L%2 (5.6)

ie. Ar() = g From expression (5.3) it is evident that the case whetedd < 1 in (5.4)
is equivalent to setting = 0 in (5.5).

The situation may change qualitatively only wheéris asymptotically close to the
Dirichlet boundary { = L). Indeed, let us assume

[=L—pL” O0<a<l1 (5.7)

Then, in the limit (4.6) one obtains forQ o < 1

¢ W ey, -1y M aa-
PLOK iz ¢) = o [pL7 00+ L7 = o L2070 p2(y? — % )12 tank(y? —m? /)12

+ h?O(L~2t), (5.8)

Since the first term on the right-hand side of the above equation is independereanaf
must be attributed to the regular part of the free energy density, we conclude that the proper
finite-size scaled field variable in this case is

n = K_1/2h1L1/2+a (59)

i.e. there exists a continuous family of layer exponefhig/) = % + a depending on the
parameterx in (5.7). In particular, the layer critical exponent is the same for any fixed
distance from the boundary.

For the sake of completeness, we give below the explicit finite-size scaling forms of the
mean spherical constraint and the free energy density in this non-trivial case.
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Since the interaction term is the same as in section 4, by combining (4.11) and the
derivative of (5.8) with respect t¢, one obtains to leading order the finite-size scaling
form of the mean spherical constraint:

1 2
4 In[costy? — x%/4)"7] - %n,z [Y1(y) + Y2(»)] = 2t. (5.10)

Similarly, for the singular part of the free energy density we obtain
(©) 3 1 i 2 2,12 (©N2 % 2
Bf 1 sing(K, b)) = =L E/ x In[coshx®—m?/4)"?] dx — (y,”) T+ a(0)
/2
+O(L739). (5.11)

Here theY;(y), i = 1,2, 3, are defined in (4.9), andis defined in (4.14)y\" = y'”(z, n)
is the solution of the mean spherical constraint (5.10) in the neighbourhood of the critical
point defined by

r=0() n = 0(). (5.12)

Case 2. When 1¢ + cosp\” (1) < 1, we use the substitution (4.17) and with the aid of
(4.18) obtain

h? sin(L — 1+ 1)x cosl — 3)x
2K L sinx cog(L + 3)x

Under the assumption (5.4), with= 1 and 0< p < 1, we obtain in the limt (4.6) that
the leading-order asymptotic behaviour of the field term (5.13) is
h? sin[(1— 2/4 — y2)1/2] cos 2/4 — y2)1/2
POK . s gy ~ 1 [(1— p)(?/4 — y»)?] cos|p(?/4 — y?) ]‘ (5.19)
2K (2/4 — y2)Y2coqm2/4 — y2)1/2
This implies, as in case 1, that (/) = 3.
Under the assumption (5.7) with® o < 1, we find that in the limit (4.6)

PK, hy; ¢) = (5.13)

¢ h? 1 _ h?
PLOK iy ¢) = o [PL™ 00+ L7 o o L2079 p2(n% 4=y M2 tann? /4 — y2) 12

+ h?O(L~2t), (5.15)
Hence one easily derives the finite-size scaling forms of the mean spherical constraint

2o+ e] =20 (5.16)

and the singular part of the free energy density

L [cosw?/4 — y?)Y?] - P
4

1 /2 2
B sing( K i) = —L—3{—4 / | xIn[costr?/4—x?)M?] dv— (3”4 nP¥a(y)
: 7 )
+O(L~%9). (5.17)
Here y\© = y“(¢, ) is the solution of the mean spherical constraint (5.16) in the

neighbourhood of the critical point defined by (5.12).

Thus, for the three-dimensiondl-layer mean spherical model equations (5.11) and
(5.17) predict that the finite-size scaling form of the singular part of the free energy density
under assumption (5.7) is

I (K ) > L73X (ai LYY, by L0 (5.18)
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Herev = 1 is the bulk correlation length exponent, and(l) = % + « is a family of layer
critical exponents depending on the parametén (5.7).

6. Discussion

In the present paper the finite-size scaling behaviour of a three-dimensional system with a
L x 0o? film geometry has been investigated within the spherical model with Neumann—
Neumann and Neumann-Dirichlet boundary conditions and surface figlaisd; acting

at the boundaries. The corresponding main explicit results, given by equations (3.24),
(4.15), and (4.23), respectively, verify the Privman—Fisher finite-size scaling hypothesis for
the singular part of the free energy. These results imply the known expmfeai% for

the ordinary surface phase transition at a Dirichlet boundary, and the emergence of a new
critical exponentAS® = g characterizing the Neumann boundary. We conjecture that the
latter critical exponent corresponds to the special (surface—bulk) phase transition within the
model. The last is consistent with the general expectation for the finite-size scaling form
of the free energy for this type of phase transition if one also accepts that the crossover
exponent® = 0, as it is for the three-dimensioné@l(n) models [1].

When the external magnetic field is applied at itte layer under Neumann-Dirichlet
boundary conditions, a family of-dependent critical exponemk;(/) appears. These
exponents change continuously frong® = g (at the Neumann surface) a9 = % (at
the Dirichlet surface), see section 5. It is interesting to note Ah&t) depends actually on
the exponent which scaléswith respect toL. For any layer at a finite distance apart from
the nearest boundard; (1) is the same as for that boundary. This is in full conformity with
the situation observed in [9] for the case of Dirichlet—Dirichlet boundary conditions. Only
whenl = L — pL%, with 0 < a < 1, the exponeniA;(/) depends continuously an. Note
that this result implies the existence of a family of critical exponents in the limit co.

It should be emphasized that the spherical model under non-periodic boundary conditions
is not in the same surface universality class as the correspomtiing model in the limit
n — oo, in contrast with the bulk universality classes. For exampfe= 1 and AP =2
for the O(co) model, butA = § and A$° = 2 for the spherical model.

From equations (1.2) and (3.24) and it immediately follows that the critical exponent
Vfli for the local surface susceptibility; 1 is yf'i = 1. The same result was obtained for
the spherical model with enhanced surface couplings under Dirichlet—Dirichlet boundary
conditions [13]. Unfortunately, in that case the model quite unphysically predicts that the
surface orders for sufficiently large enhancements eved for3 at some temperature above
the bulk critical temperature. If one improves the model by introducing a second spherical
constraint for the spins at the boundaries only [14] this is no longer the case, i.e. the only
critical point ford < 3 remains the bulk one. Then far = 3 the exponeny?; = —1,
which is the corresponding critical exponent for the ordinary phase transition [1, 9]. In our
considerations the bulk and surface couplings are equal, but the question if and how the
behaviour will change when additional spherical constraints on the spins at the surfaces are
introduced still remains open. We hope to return to this problem in a subsequent publication.
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